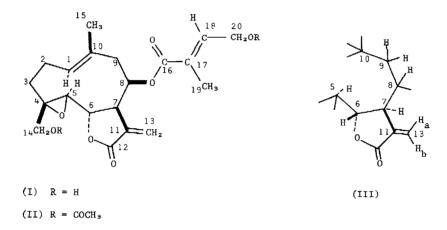
Tetrahedron Letters No. 14, pp 1051 - 1054, 1976. Pergamon Press. Printed in Great Britain.

THE STRUCTURE AND STEREOCHEMISTRY OF EUPAHYSSOPIN, A NEW ANTITUMOR GERMACRANOLIDE FROM EUPATORIUM HYSSOPIFOLIUM¹


Kuo-Hsiung Lee^{*}, Takeatsu Kimura, Masao Okamoto, and Carole M. Cowherd Department of Medicinal Chemistry, School of Pharmacy, University of North Carolina, Chapel Hill, North Carolina 27514 Andrew T. McPhail^{*} and Kay D. Onan

Paul M. Gross Chemical Laboratory, Duke University, Durham, North Carolina 27706

(Received in USA 19 January 1976; received in UK for publication 27 February 1976)

As a result of the continuing search for new and novel naturally occurring potential antitumor agents¹, the chloroform extract of the whole plant of *Eupatorium hyssopifolium* L². was found to show significant inhibitory activity against Walker 256 carcinosarcoma as well as P-388 lymphocytic leukemia. We report herein the isolation and structure determination of eupahyssopin (I), the major active principle^{3,4} from *E. hyssopifolium*.

Euphyssopin, a new germacranolide, was isolated in 0.434% yield as colorless prisms from the chloroform extract of *E. hyssopifolium* according to an exact literature procedure⁵ followed by successive silica gel column chromatography. Eupahyssopin [(I), m.p. 125°, $[\alpha]_D^{25}$ -138.9° (c = 1.45, CHCl₃), m/e 378.1684 (M⁺)] has molecular formula⁶ C₂₀H₂₆O₇. The presence of an α -methylene- γ -lactone moiety bearing a proton at the β -position (H-7) in (I) is indicated by the appearance of ir bands (KBr) at 1775 and 1665 cm⁻¹ and is substantiated by the presence in the nmr spectrum⁷ of a characteristic pair of low field doublets at δ 5.76 (1H, J = 3.0 Hz, H_a-13) and 6.36 (1H, J = 3.0 Hz, H_b-13). Double resonance experiments involving H_a and H_b established the location of the H-7 multiplet at δ 3.22. The *trans*-diaxial relationships between the protons at C-5, C-6, and C-7, with H-5 α , H-6 β , H-7 α^8 is seen in the signal for H-6 which occurs as a well-defined one-proton triplet at δ 4.91 (J = 9.0 Hz), a feature common to this class of compounds. Irradiation at the frequency of H-6 converted the doublet at δ 3.04 (J = 9.0 Hz, H-5) into a singlet and also affected the multiplet due to H-7. Irradiation at the frequency of H-8 (δ 5.76, overlapped m) sharpened the multiplet at δ 3.22 (H-7) and collapsed two well-separated doublets of doublets at δ 2.79 (J = 5, 14 Hz) and 2.20-2.50 (partially overlapped) into two doublets (J = 14 Hz), demonstrating that H-8 was adjacent to two protons at C-9 which in turn was adjacent to a fully substituted C-10. The foregoing observations establish the relationship between the protons in the C-5 — C-9 region to be as in partial structure (III).

The presence of two primary hydroxyl groups in (I) was shown by the presence of a strong ir band at 3420 cm⁻¹, a pair of AB-type doublets at δ 4.02 (1H, J = 12 Hz, H-14) and 3.84 (1H, J = 12 Hz, H-14) as well as a two-proton doublet of doublets at δ 4.33 (J = 1, 6 Hz, H-20) in the nmr spectrum. These signals shifted downfield to δ 4.78, 3.80, and 4.76, respectively, in the diacetate [(II), m.p. 112.5°, $C_{24}H_{30}O_{9}$, m/e 462.1894 (M⁺), δ 2.10 (3H, s), 2.15(3H, s) (2 OAc)], obtained from acetylation of (I) with acetic anhydride in pyridine.

The ¹³C nmr spectrum of (I) displayed two carbonyl carbon signals at δ 165.96 and 168.77. One of these was due to the lactonic carbonyl; the other was from an ester which was also indicated by an ir band at 1710 cm⁻¹ Spin decoupling led to the following assignment of protons consistent with the 2-methyl-4-hydroxy-2-butenoate structure for the ester group as depicted in (I): δ 1.80 (1H, d, J = 1.6 Hz, H-19), 6.81 (1H, dt, J = 1.6, 6 Hz, H-18), and 4.33 (2H, dd, J = 1, 6 Hz, H-20). Further confirmation for these assignments was obtained by diagnostically important mass peaks at m/e 262 and 304 which were due to loss of HOOC-C(CH₂)=CH-CH₂OH and HOOC-C(CH₂)=CH-CH₂OCOCH₂ in (I) and (II), respectively.

The nature of the protons and the methyl group at C-2, C-1, and C-10 in (I) were deduced as follows. The nmr spectrum of (I) exhibited a three-proton singlet at δ 1.73, slightly split by allylic coupling (J 0.5 Hz), thereby indicating the presence of a vinyl methyl group at C-10. The olefinic proton at C-1 appeared as a multiplet at δ 5.37 which upon irradiation collapsed the C-10 methyl doublet to a singlet and affected the two-proton multiplet due to H-2 (δ 2.43). Conversely, irradiation at the frequency of the C-10 methyl doublet converted the multiplet at δ 5.37 (H-1, X part of an ABX system) [H-1 now only coupled to two protons at C-2 (A and B components of an ABX system)] to a double doublet (J = 4,11 Hz).

The remaining oxygen atom of (I) was assigned as a 4,5-epoxide by off-resonance proton decoupling in the ¹³C nmr spectrum which showed a doublet at δ 66.82 for the -CH(O)- linkage at the 5-position and a singlet at δ 64.28 for the >C(O)-C moiety at the 4-position.

Unequivocal proof of the structure and stereochemistry of (I) was provided by singlecrystal X-ray analysis of the diacetate (II) which crystallizes in the orthorhombic system, space group $P2_12_12_1$, a = 11.04(1), b = 24.81(1), c = 8.79(1) Å, Z = 4. The crystal structure was solved by direct non-centrosymmetric phase determining procedures using MULTAN⁹. Atomic positional and anisotropic thermal parameters for the non-hydrogen atoms have been refined to R 0.131 over 1087 statistically significant [$I^* > 2.0\sigma(I)$] reflections measured on an Enraf-Nonius CAD-3 automated diffractometer (Ni-filtered Cu- K_{α} radiation, $\lambda = 1.5418$ Å) operating in the θ -20 scanning mode. The 4,5-epoxide is *trans*; the C-4-CH₂OH and C-10 methyl groups are *syn* oriented on the β face of the molecule. The ten-membered ring conformation defined by the endocyclic torsion angles, $\omega_{1,2}$ -101, $\omega_{2,3}$ 55, $\omega_{3,4}$ -82, $\omega_{4,5}$ 146, $\omega_{5,6}$ -131, $\omega_{6,7}$ 101, $\omega_{7,8}$ -80, $\omega_{8,9}$ 55, $\omega_{9,10}$ -111, $\omega_{1,10}$ 176°, closely resembles that of eupatolide¹⁰ for which the corresponding values are -98, 50, -86, 155, -136, 90, -76, 67, -115, and 167°.

Acknowledgements

This investigation was supported by grants from the National Cancer Institute (CA-17625) and the American Cancer Society (CH-19) to K.H.L. We thank Dr. David L. Harris, Department of Chemistry, University of North Carolina, Chapel Hill, for XL-100 nmr spectra and Dr. David Rosenthal and Mr. Fred Williams of the Research Triangle Center for Mass Spectrometry for mass spectral data. The XL-100 NMR was puchased by grants from NSF and NIH to the Chemistry Department, UNC-CH.

References and Footnotes

- Antitumor Agents. 18. Part 17: K. H. Lee, Y. Imakura, and D. Sims, submitted for publication.
- Specimens were gathered in 1971, in Virginia. We thank Dr. M. E. Wall and Mr. H. L. Taylor, Research Triangle Institute, N. C., for providing the plant material (Voucher No. PR 21479).
- 3. Eupahyssopin showed significant ($T/C \ge 125\%$) inhibitory activity against Walker 256 carcinosarcoma in rats (T/C 330%) at the 2.5 mg./kg. level. In vivo activity was assayed by Dr. I. H. Hall, Department of Medicinal Chemistry, School of Pharmacy, University of North Carolina at Chapel Hill, by a literature method.
- R. I. Geran, N. H. Greenberg, M. M. MacDonald, A. M. Schumacher, and B. J. Abbott, <u>Cancer Chemother. Rep. (Part 3</u>), <u>3</u>, 1 (1972).
- 5. K. H. Lee, R. F. Simpson, and T. A. Geissman, Phytochemistry, 8, 1515 (1969).
- 6. All compounds reported gave satisfactory elemental analysis.
- 7. ¹H and ¹³C nmr spectra were measured in CDCl₃ (TMS) with a Varian XL-100-FT instrument.
- Assuming that the C-7 hydrogen is oriented α as in all known naturally-occurring germacranolides from higher plants.
- 9. G. Germain, P. Main, and M. M. Woolfson, Acta Cryst., A27, 368 (1971).
- 10. A. T. McPhail and K. D. Onan, J. C. S. Perkin II, in press.